Transition semi-wave solutions of reaction diffusion equations with free boundaries
نویسندگان
چکیده
منابع مشابه
Speed of wave-front solutions to hyperbolic reaction-diffusion equations.
The asymptotic speed problem of front solutions to hyperbolic reaction-diffusion (HRD) equations is studied in detail. We perform linear and variational analyses to obtain bounds for the speed. In contrast to what has been done in previous work, here we derive upper bounds in addition to lower ones in such a way that we can obtain improved bounds. For some functions it is possible to determine ...
متن کاملNumerical solutions for fractional reaction-diffusion equations
Fractional diffusion equations are useful for applications where a cloud of particles spreads faster than the classical equation predicts. In a fractional diffusion equation, the second derivative in the spatial variable is replaced by a fractional derivative of order less than two. The resulting solutions spread faster than the classical solutions and may exhibit asymmetry, depending on the fr...
متن کاملPeriodic Wave Shock solutions of Burgers equations
In this paper we investigate the exact peroidic wave shock solutions of the Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parametr ε and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock type solution for the cauchy problem of the in...
متن کاملEntire Solutions of Reaction-diffusion Equations with Balanced Bistable Nonlinearities
This paper deals with entire solutions of a bistable reaction-diffusion equation for which the speed of the traveling wave connecting two constant stable equilibria is zero. Entire solutions which behave as two traveling fronts approaching, with super-slow speeds, from opposite directions and annihilating in a finite time are constructed by using a quasiinvariant manifold approach. Such solutio...
متن کاملOn Extending Solutions to Wave Equations across Glancing Boundaries
(for example, the wave operator acting in the exterior of a smooth obstacle). After extending the coefficients of P smoothly across <9M, we can view P as an operator on some open extension M of M. The problem is easily solved in the two cases where no null bicharacteristics tangent to dT*M are present. When dM is everywhere elliptic with respect to P , classical theory implies that the desired ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2019
ISSN: 0022-0396
DOI: 10.1016/j.jde.2019.06.001